207 research outputs found

    Migrating medical communications software to a multi-tenant cloud environment

    Get PDF
    The rise of cloud computing has paved the way for many new applications. Many of these new cloud applications are also multi-tenant, ensuring multiple end users can make use of the same application instance. While these technologies make it possible to create many new applications, many legacy applications can also benefit from the added flexibility and cost-savings of cloud computing and multi-tenancy. In this paper, we describe the steps required to migrate a. NET-based medical communications application to the Windows Azure public cloud environment, and the steps required to add multi-tenancy to the application. We then discuss the advantages and disadvantages of our migration approach. We found that the migration to the cloud itself requires only a limited amount of changes to the application, but that this also limited the benefits, as individual instances would only be partially used. Adding multi-tenancy requires more changes, but when this is done, it has the potential to greatly reduce the cost of running the application

    Study on the virulence and cross-neutralization capability of recent porcine parvovirus field isolates and vaccine viruses in experimentally infected pregnant gilts

    Get PDF
    The pathogenicity of two recent German field ISolates of Porcine parvovirus (PPV-27a and PPV 143a) and two vaccine viruses [PPV-NADL-2 and PPV-IDT (MSV)], which are used for the production of inactivated vaccines, was mvestigated by maculation of pregnant sows at day 40 of gestation. Post-infection sera of these sows as well as antisera prepared in rabbits by immunization with the four above-mentioned PPV isolates and with the virulent strain PPV-Challenge (Engl.) were tested for their homologous neutralization activities

    The \u3ci\u3eLATERAL ROOT DENSITY\u3c/i\u3e gene regulates root growth during water stress in wheat

    Get PDF
    Drought stress is the major limiting factor in agriculture. Wheat, which is the most widely grown crop in the world, is predominantly cultivated in drought-prone rainfed environments. Since roots play a critical role in water uptake, root response to water limitations is an important component for enhancing wheat adaptation. In an effort to discover novel genetic sources for improving wheat adaptation, we characterized a wheat translocation line with a chromosomal segment from Agropyron elongatum, a wild relative of wheat, which unlike common wheat maintains root growth under limited-water conditions. By exploring the root transcriptome data, we found that reduced transcript level of LATERAL ROOT DENSITY (LRD) gene under limited water in the Agropyron translocation line confers it the ability to maintain root growth. The Agropyron allele of LRD is down-regulated in response to water limitation in contrast with the wheat LRD allele, which is up-regulated by water deficit stress. Suppression of LRD expression in wheat RNAi plants confers the ability to maintain root growth under water limitation. We show that exogenous gibberellic acid (GA) promotes lateral root growth and present evidence for the role of GA in mediating the differential regulation of LRD between the common wheat and the Agropyron alleles under water stress. Suppression of LRD also had a positive pleiotropic effect on grain size and number under optimal growth conditions. Collectively, our findings suggest that LRD can be potentially useful for improving wheat response to water stress and altering yield components

    Ethical Issues in the Development of Readiness Cohorts in Alzheimer's Disease Research.

    Get PDF
    There is growing interest in the development of novel approaches to secondary prevention trials in Alzheimer's disease to facilitate screening and recruitment of research participants and to reduce the time and costs associated with clinical trials. Several international research collaborations are setting up research infrastructures that link existing research cohorts, studies or patient registries to establish 'trial-ready' or 'readiness' cohorts. From these cohorts, individuals are recruited into clinical trial platforms. In setting up such research infrastructures, researchers must make ethically challenging design decisions in at least three areas: re-contacting participants in existing research studies, obtaining informed consent for participation in a readiness cohort, and disclosure of Alzheimer's disease-related biomarkers. These ethical considerations have been examined by a dedicated workgroup within the European Prevention of Alzheimer's Dementia (EPAD) project, a trans-European longitudinal cohort and adaptive proof-of-concept clinical trial platform. This paper offers recommendations for the ethical management of re-contact, informed consent and risk disclosure which may be of value to other research collaborations in the process of developing readiness cohorts for prevention trials in Alzheimer's disease and other disease areas.This work was funded through the Ethical Legal and Social Implications work package of the European Prevention of Alzheimer’s Dementia (EPAD) study EPAD receives support from the Innovative Medicines Initiative Joint Undertaking under grant agreement n° 115736, resources of which are composed of financial contribution from the European Union’s Seventh Framework Programme (FP7/2007-2013) and EFPIA companies’ in kind contribution. RM was also funded through the UK National Institute of Health Research grant to the Cambridge Biomedical Research Centre

    Fine mapping and cloning of the major seed protein quantitative trait loci on soybean chromosome 20

    Get PDF
    Soybean [Glycine max (L.) Merr.] is a unique crop species because it has high levels of both protein and oil in its seed. Of the many quantitative trait loci (QTL) controlling soybean seed protein content, alleles of the cqSeed protein-003 QTL on chromosome 20 exert the greatest additive effect. The high-protein allele exists in both cultivated and wild soybean (Glycine soja Siebold & Zucc.) germplasm. Our objective was to fine map this QTL to enable positional-based cloning of its underlying causative gene(s). Fine mapping was achieved by developing and testing a series of populations in which the chromosomal region surrounding the segregating high- versus low-protein alleles was gradually narrowed, using marker-based detection of recombinant events. The resultant 77.8 kb interval was directly sequenced from a G. soja source and compared with the reference genome to identify structural and sequence polymorphisms. An insertion/deletion variant detected in Glyma.20G85100 was found to have near-perfect +/- concordance with high/low-protein allele genotypes inferred for this QTL in parents of published mapping populations. The indel structure was concordant with an evolutionarily recent insertion of a TIR transposon into the gene in the low-protein lineage. Seed protein was significantly greater in soybean expressing an RNAi hairpin downregulation element in two independent events relative to control null segregant lineages. We conclude that a transposon insertion within the CCT domain protein encoded by the Glyma.20G85100 gene accounts for the high/low seed protein alleles of the cqSeed protein-003 QTL

    Expression of AtWRI1 and AtDGAT1 during soybean embryo development influences oil and carbohydrate metabolism

    Get PDF
    Soybean oil is one of the most consumed vegetable oils worldwide. Genetic improvement of its concentration in seeds has been historically pursued due to its direct association with its market value. Engineering attempts aiming to increase soybean seed oil presented different degrees of success that varied with the genetic design and the specific variety considered. Understanding the embryo’s responses to the genetic modifications introduced, is a critical step to successful approaches. In this work, the metabolic and transcriptional responses to AtWRI1 and AtDGAT1 expression in soybean seeds were evaluated. AtWRI1 is a master regulator of fatty acid (FA) biosynthesis, and AtDGAT1 encodes an enzyme catalysing the final and rate-limiting step of triacylglycerides biosynthesis. The events expressing these genes in the embryo did not show an increase in total FA content, but they responded with changes in the oil and carbohydrate composition. Transcriptomic studies revealed a down-regulation of genes putatively encoding for oil body packaging proteins, and a strong induction of genes annotated as lipases and FA biosynthesis inhibitors. Novel putative AtWRI1 targets, presenting an AW-box in the upstream region of the genes, were identified by comparison with an event that harbours only AtWRI1. Lastly, targeted metabolomics analysis showed that carbon from sugar phosphates could be used for FA competing pathways, such as starch and cell wall polysaccharides, contributing to the restriction in oil accumulation. These results allowed the identification of key cellular processes that need to be considered to break the embryo’s natural restriction to uncontrolled seed lipid increase

    Expression of \u3ci\u3eAtWRI1\u3c/i\u3e and \u3ci\u3eAtDGAT1\u3c/i\u3e during soybean embryo development influences oil and carbohydrate metabolism

    Get PDF
    Soybean oil is one of the most consumed vegetable oils worldwide. Genetic improvement of its concentration in seeds has been historically pursued due to its direct association with its market value. Engineering attempts aiming to increase soybean seed oil presented different degrees of success that varied with the genetic design and the specific variety considered. Understanding the embryo’s responses to the genetic modifications introduced, is a critical step to successful approaches. In this work, the metabolic and transcriptional responses to AtWRI1 and AtDGAT1 expression in soybean seeds were evaluated. AtWRI1 is a master regulator of fatty acid (FA) biosynthesis, and AtDGAT1 encodes an enzyme catalysing the final and rate-limiting step of triacylglycerides biosynthesis. The events expressing these genes in the embryo did not show an increase in total FA content, but they responded with changes in the oil and carbohydrate composition. Transcriptomic studies revealed a down-regulation of genes putatively encoding for oil body packaging proteins, and a strong induction of genes annotated as lipases and FA biosynthesis inhibitors. Novel putative AtWRI1 targets, presenting an AW-box in the upstream region of the genes, were identified by comparison with an event that harbours only AtWRI1. Lastly, targeted metabolomics analysis showed that carbon from sugar phosphates could be used for FA competing pathways, such as starch and cell wall polysaccharides, contributing to the restriction in oil accumulation. These results allowed the identification of key cellular processes that need to be considered to break the embryo’s natural restriction to uncontrolled seed lipid increase

    The effect of accretion temperature on microstructure and bending strength of atmospheric ice

    Get PDF
    Accurate determination of the mechanical response of atmospheric ice is key to understanding the risks associated with ice impact on aircraft during flight. Two types of atmospheric ice which are of particular interest to the aerospace industry are studied. Rime and Glaze ice are each manufactured in an icing wind tunnel facility under controlled conditions. Rime ice is accreted at a temperature of −20◦C, and Glaze ice is accreted at −5 ◦C. Quasi-static threepoint bend tests are performed on both types of ice to understand the effect of accretion temperature, and therefore microstructure, on strength. The results indicate that the ice accretion temperature, and thus microstructure, has a significant influence on the bending strength. On average, the bending strength of Rime ice is 9.0 ± 0.18 MPa compared to 4.4 ± 0.093 MPa for Glaze. The comparatively lower accretion temperature of Rime results in smaller grain sizes and higher bending strength. In contrast, the effective modulus appears insensitive to ice microstructure, with an average value of 3.5±0.12 GPa for Rime compared to 3.6±0.098 GPa for Glaze. Furthermore, the results indicate that both the bending strength and effective modulus are insensitive to the ice storage time.Innovate UK: 113155 Rolls-Royce pl
    • …
    corecore